3.2.19 \(\int \frac {1}{x^2 \sqrt {a+b x+c x^2} (d+e x+f x^2)} \, dx\) [119]

Optimal. Leaf size=543 \[ -\frac {\sqrt {a+b x+c x^2}}{a d x}+\frac {b \tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{2 a^{3/2} d}+\frac {e \tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{\sqrt {a} d^2}-\frac {f \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right ) \tanh ^{-1}\left (\frac {4 a f-b \left (e-\sqrt {e^2-4 d f}\right )+2 \left (b f-c \left (e-\sqrt {e^2-4 d f}\right )\right ) x}{2 \sqrt {2} \sqrt {c e^2-2 c d f-b e f+2 a f^2-(c e-b f) \sqrt {e^2-4 d f}} \sqrt {a+b x+c x^2}}\right )}{\sqrt {2} d^2 \sqrt {e^2-4 d f} \sqrt {c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )+f \left (2 a f-b \left (e-\sqrt {e^2-4 d f}\right )\right )}}+\frac {f \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right ) \tanh ^{-1}\left (\frac {4 a f-b \left (e+\sqrt {e^2-4 d f}\right )+2 \left (b f-c \left (e+\sqrt {e^2-4 d f}\right )\right ) x}{2 \sqrt {2} \sqrt {c e^2-2 c d f-b e f+2 a f^2+(c e-b f) \sqrt {e^2-4 d f}} \sqrt {a+b x+c x^2}}\right )}{\sqrt {2} d^2 \sqrt {e^2-4 d f} \sqrt {c e^2-2 c d f-b e f+2 a f^2+(c e-b f) \sqrt {e^2-4 d f}}} \]

[Out]

1/2*b*arctanh(1/2*(b*x+2*a)/a^(1/2)/(c*x^2+b*x+a)^(1/2))/a^(3/2)/d+e*arctanh(1/2*(b*x+2*a)/a^(1/2)/(c*x^2+b*x+
a)^(1/2))/d^2/a^(1/2)-(c*x^2+b*x+a)^(1/2)/a/d/x+1/2*f*arctanh(1/4*(4*a*f-b*(e+(-4*d*f+e^2)^(1/2))+2*x*(b*f-c*(
e+(-4*d*f+e^2)^(1/2))))*2^(1/2)/(c*x^2+b*x+a)^(1/2)/(c*e^2-2*c*d*f-b*e*f+2*a*f^2+(-b*f+c*e)*(-4*d*f+e^2)^(1/2)
)^(1/2))*(e^2-2*d*f-e*(-4*d*f+e^2)^(1/2))/d^2*2^(1/2)/(-4*d*f+e^2)^(1/2)/(c*e^2-2*c*d*f-b*e*f+2*a*f^2+(-b*f+c*
e)*(-4*d*f+e^2)^(1/2))^(1/2)-1/2*f*arctanh(1/4*(4*a*f+2*x*(b*f-c*(e-(-4*d*f+e^2)^(1/2)))-b*(e-(-4*d*f+e^2)^(1/
2)))*2^(1/2)/(c*x^2+b*x+a)^(1/2)/(c*e^2-2*c*d*f-b*e*f+2*a*f^2-(-b*f+c*e)*(-4*d*f+e^2)^(1/2))^(1/2))*(e^2-2*d*f
+e*(-4*d*f+e^2)^(1/2))/d^2*2^(1/2)/(-4*d*f+e^2)^(1/2)/(f*(2*a*f-b*(e-(-4*d*f+e^2)^(1/2)))+c*(e^2-2*d*f-e*(-4*d
*f+e^2)^(1/2)))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 2.98, antiderivative size = 543, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 5, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {6860, 744, 738, 212, 1046} \begin {gather*} \frac {b \tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{2 a^{3/2} d}-\frac {f \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right ) \tanh ^{-1}\left (\frac {4 a f+2 x \left (b f-c \left (e-\sqrt {e^2-4 d f}\right )\right )-b \left (e-\sqrt {e^2-4 d f}\right )}{2 \sqrt {2} \sqrt {a+b x+c x^2} \sqrt {2 a f^2-\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}\right )}{\sqrt {2} d^2 \sqrt {e^2-4 d f} \sqrt {f \left (2 a f-b \left (e-\sqrt {e^2-4 d f}\right )\right )+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}+\frac {f \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right ) \tanh ^{-1}\left (\frac {4 a f+2 x \left (b f-c \left (\sqrt {e^2-4 d f}+e\right )\right )-b \left (\sqrt {e^2-4 d f}+e\right )}{2 \sqrt {2} \sqrt {a+b x+c x^2} \sqrt {2 a f^2+\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}\right )}{\sqrt {2} d^2 \sqrt {e^2-4 d f} \sqrt {2 a f^2+\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}+\frac {e \tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{\sqrt {a} d^2}-\frac {\sqrt {a+b x+c x^2}}{a d x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x^2*Sqrt[a + b*x + c*x^2]*(d + e*x + f*x^2)),x]

[Out]

-(Sqrt[a + b*x + c*x^2]/(a*d*x)) + (b*ArcTanh[(2*a + b*x)/(2*Sqrt[a]*Sqrt[a + b*x + c*x^2])])/(2*a^(3/2)*d) +
(e*ArcTanh[(2*a + b*x)/(2*Sqrt[a]*Sqrt[a + b*x + c*x^2])])/(Sqrt[a]*d^2) - (f*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*
f])*ArcTanh[(4*a*f - b*(e - Sqrt[e^2 - 4*d*f]) + 2*(b*f - c*(e - Sqrt[e^2 - 4*d*f]))*x)/(2*Sqrt[2]*Sqrt[c*e^2
- 2*c*d*f - b*e*f + 2*a*f^2 - (c*e - b*f)*Sqrt[e^2 - 4*d*f]]*Sqrt[a + b*x + c*x^2])])/(Sqrt[2]*d^2*Sqrt[e^2 -
4*d*f]*Sqrt[c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f]) + f*(2*a*f - b*(e - Sqrt[e^2 - 4*d*f]))]) + (f*(e^2 - 2*d*f
- e*Sqrt[e^2 - 4*d*f])*ArcTanh[(4*a*f - b*(e + Sqrt[e^2 - 4*d*f]) + 2*(b*f - c*(e + Sqrt[e^2 - 4*d*f]))*x)/(2*
Sqrt[2]*Sqrt[c*e^2 - 2*c*d*f - b*e*f + 2*a*f^2 + (c*e - b*f)*Sqrt[e^2 - 4*d*f]]*Sqrt[a + b*x + c*x^2])])/(Sqrt
[2]*d^2*Sqrt[e^2 - 4*d*f]*Sqrt[c*e^2 - 2*c*d*f - b*e*f + 2*a*f^2 + (c*e - b*f)*Sqrt[e^2 - 4*d*f]])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 744

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m + 1)*
((a + b*x + c*x^2)^(p + 1)/((m + 1)*(c*d^2 - b*d*e + a*e^2))), x] + Dist[(2*c*d - b*e)/(2*(c*d^2 - b*d*e + a*e
^2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c,
 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && EqQ[m + 2*p + 3, 0]

Rule 1046

Int[((g_.) + (h_.)*(x_))/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbo
l] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[(2*c*g - h*(b - q))/q, Int[1/((b - q + 2*c*x)*Sqrt[d + e*x + f*x^2])
, x], x] - Dist[(2*c*g - h*(b + q))/q, Int[1/((b + q + 2*c*x)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, b,
c, d, e, f, g, h}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[e^2 - 4*d*f, 0] && PosQ[b^2 - 4*a*c]

Rule 6860

Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a +
b*x^n + c*x^(2*n)), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {1}{x^2 \sqrt {a+b x+c x^2} \left (d+e x+f x^2\right )} \, dx &=\int \left (\frac {1}{d x^2 \sqrt {a+b x+c x^2}}-\frac {e}{d^2 x \sqrt {a+b x+c x^2}}+\frac {e^2-d f+e f x}{d^2 \sqrt {a+b x+c x^2} \left (d+e x+f x^2\right )}\right ) \, dx\\ &=\frac {\int \frac {e^2-d f+e f x}{\sqrt {a+b x+c x^2} \left (d+e x+f x^2\right )} \, dx}{d^2}+\frac {\int \frac {1}{x^2 \sqrt {a+b x+c x^2}} \, dx}{d}-\frac {e \int \frac {1}{x \sqrt {a+b x+c x^2}} \, dx}{d^2}\\ &=-\frac {\sqrt {a+b x+c x^2}}{a d x}-\frac {b \int \frac {1}{x \sqrt {a+b x+c x^2}} \, dx}{2 a d}+\frac {(2 e) \text {Subst}\left (\int \frac {1}{4 a-x^2} \, dx,x,\frac {2 a+b x}{\sqrt {a+b x+c x^2}}\right )}{d^2}-\frac {\left (f \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )\right ) \int \frac {1}{\left (e+\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+b x+c x^2}} \, dx}{d^2 \sqrt {e^2-4 d f}}+\frac {\left (f \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )\right ) \int \frac {1}{\left (e-\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+b x+c x^2}} \, dx}{d^2 \sqrt {e^2-4 d f}}\\ &=-\frac {\sqrt {a+b x+c x^2}}{a d x}+\frac {e \tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{\sqrt {a} d^2}+\frac {b \text {Subst}\left (\int \frac {1}{4 a-x^2} \, dx,x,\frac {2 a+b x}{\sqrt {a+b x+c x^2}}\right )}{a d}+\frac {\left (2 f \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )\right ) \text {Subst}\left (\int \frac {1}{16 a f^2-8 b f \left (e+\sqrt {e^2-4 d f}\right )+4 c \left (e+\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {4 a f-b \left (e+\sqrt {e^2-4 d f}\right )-\left (-2 b f+2 c \left (e+\sqrt {e^2-4 d f}\right )\right ) x}{\sqrt {a+b x+c x^2}}\right )}{d^2 \sqrt {e^2-4 d f}}-\frac {\left (2 f \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )\right ) \text {Subst}\left (\int \frac {1}{16 a f^2-8 b f \left (e-\sqrt {e^2-4 d f}\right )+4 c \left (e-\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {4 a f-b \left (e-\sqrt {e^2-4 d f}\right )-\left (-2 b f+2 c \left (e-\sqrt {e^2-4 d f}\right )\right ) x}{\sqrt {a+b x+c x^2}}\right )}{d^2 \sqrt {e^2-4 d f}}\\ &=-\frac {\sqrt {a+b x+c x^2}}{a d x}+\frac {b \tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{2 a^{3/2} d}+\frac {e \tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{\sqrt {a} d^2}-\frac {f \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right ) \tanh ^{-1}\left (\frac {4 a f-b \left (e-\sqrt {e^2-4 d f}\right )+2 \left (b f-c \left (e-\sqrt {e^2-4 d f}\right )\right ) x}{2 \sqrt {2} \sqrt {c e^2-2 c d f-b e f+2 a f^2-(c e-b f) \sqrt {e^2-4 d f}} \sqrt {a+b x+c x^2}}\right )}{\sqrt {2} d^2 \sqrt {e^2-4 d f} \sqrt {c e^2-2 c d f-b e f+2 a f^2-(c e-b f) \sqrt {e^2-4 d f}}}+\frac {f \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right ) \tanh ^{-1}\left (\frac {4 a f-b \left (e+\sqrt {e^2-4 d f}\right )+2 \left (b f-c \left (e+\sqrt {e^2-4 d f}\right )\right ) x}{2 \sqrt {2} \sqrt {c e^2-2 c d f-b e f+2 a f^2+(c e-b f) \sqrt {e^2-4 d f}} \sqrt {a+b x+c x^2}}\right )}{\sqrt {2} d^2 \sqrt {e^2-4 d f} \sqrt {c e^2-2 c d f-b e f+2 a f^2+(c e-b f) \sqrt {e^2-4 d f}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.
time = 0.72, size = 423, normalized size = 0.78 \begin {gather*} \frac {-\frac {d \sqrt {a+x (b+c x)}}{a x}+\frac {(b d+2 a e) \tanh ^{-1}\left (\frac {-\sqrt {c} x+\sqrt {a+x (b+c x)}}{\sqrt {a}}\right )}{a^{3/2}}+\text {RootSum}\left [b^2 d-a b e+a^2 f-4 b \sqrt {c} d \text {$\#$1}+2 a \sqrt {c} e \text {$\#$1}+4 c d \text {$\#$1}^2+b e \text {$\#$1}^2-2 a f \text {$\#$1}^2-2 \sqrt {c} e \text {$\#$1}^3+f \text {$\#$1}^4\&,\frac {b e^2 \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right )-b d f \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right )-a e f \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right )-2 \sqrt {c} e^2 \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}+2 \sqrt {c} d f \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}+e f \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}^2}{-2 b \sqrt {c} d+a \sqrt {c} e+4 c d \text {$\#$1}+b e \text {$\#$1}-2 a f \text {$\#$1}-3 \sqrt {c} e \text {$\#$1}^2+2 f \text {$\#$1}^3}\&\right ]}{d^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^2*Sqrt[a + b*x + c*x^2]*(d + e*x + f*x^2)),x]

[Out]

(-((d*Sqrt[a + x*(b + c*x)])/(a*x)) + ((b*d + 2*a*e)*ArcTanh[(-(Sqrt[c]*x) + Sqrt[a + x*(b + c*x)])/Sqrt[a]])/
a^(3/2) + RootSum[b^2*d - a*b*e + a^2*f - 4*b*Sqrt[c]*d*#1 + 2*a*Sqrt[c]*e*#1 + 4*c*d*#1^2 + b*e*#1^2 - 2*a*f*
#1^2 - 2*Sqrt[c]*e*#1^3 + f*#1^4 & , (b*e^2*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1] - b*d*f*Log[-(Sqrt[
c]*x) + Sqrt[a + b*x + c*x^2] - #1] - a*e*f*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1] - 2*Sqrt[c]*e^2*Log
[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1 + 2*Sqrt[c]*d*f*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*
#1 + e*f*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1^2)/(-2*b*Sqrt[c]*d + a*Sqrt[c]*e + 4*c*d*#1 + b*e*#
1 - 2*a*f*#1 - 3*Sqrt[c]*e*#1^2 + 2*f*#1^3) & ])/d^2

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(954\) vs. \(2(474)=948\).
time = 0.19, size = 955, normalized size = 1.76

method result size
default \(\frac {4 f^{2} \sqrt {2}\, \ln \left (\frac {\frac {-b f \sqrt {-4 d f +e^{2}}+\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-b e f -2 c d f +c \,e^{2}}{f^{2}}+\frac {\left (-c \sqrt {-4 d f +e^{2}}+b f -c e \right ) \left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {\sqrt {2}\, \sqrt {\frac {-b f \sqrt {-4 d f +e^{2}}+\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-b e f -2 c d f +c \,e^{2}}{f^{2}}}\, \sqrt {4 \left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right )^{2} c +\frac {4 \left (-c \sqrt {-4 d f +e^{2}}+b f -c e \right ) \left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {-2 b f \sqrt {-4 d f +e^{2}}+2 \sqrt {-4 d f +e^{2}}\, c e +4 a \,f^{2}-2 b e f -4 c d f +2 c \,e^{2}}{f^{2}}}}{2}}{x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}}\right )}{\left (e +\sqrt {-4 d f +e^{2}}\right )^{2} \sqrt {-4 d f +e^{2}}\, \sqrt {\frac {-b f \sqrt {-4 d f +e^{2}}+\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-b e f -2 c d f +c \,e^{2}}{f^{2}}}}-\frac {4 f^{2} \sqrt {2}\, \ln \left (\frac {\frac {b f \sqrt {-4 d f +e^{2}}-\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-b e f -2 c d f +c \,e^{2}}{f^{2}}+\frac {\left (c \sqrt {-4 d f +e^{2}}+b f -c e \right ) \left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {\sqrt {2}\, \sqrt {\frac {b f \sqrt {-4 d f +e^{2}}-\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-b e f -2 c d f +c \,e^{2}}{f^{2}}}\, \sqrt {4 \left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right )^{2} c +\frac {4 \left (c \sqrt {-4 d f +e^{2}}+b f -c e \right ) \left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {2 b f \sqrt {-4 d f +e^{2}}-2 \sqrt {-4 d f +e^{2}}\, c e +4 a \,f^{2}-2 b e f -4 c d f +2 c \,e^{2}}{f^{2}}}}{2}}{x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}}\right )}{\left (-e +\sqrt {-4 d f +e^{2}}\right )^{2} \sqrt {-4 d f +e^{2}}\, \sqrt {\frac {b f \sqrt {-4 d f +e^{2}}-\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-b e f -2 c d f +c \,e^{2}}{f^{2}}}}-\frac {4 f \left (-\frac {\sqrt {c \,x^{2}+b x +a}}{a x}+\frac {b \ln \left (\frac {2 a +b x +2 \sqrt {a}\, \sqrt {c \,x^{2}+b x +a}}{x}\right )}{2 a^{\frac {3}{2}}}\right )}{\left (-e +\sqrt {-4 d f +e^{2}}\right ) \left (e +\sqrt {-4 d f +e^{2}}\right )}+\frac {16 f^{2} e \ln \left (\frac {2 a +b x +2 \sqrt {a}\, \sqrt {c \,x^{2}+b x +a}}{x}\right )}{\left (-e +\sqrt {-4 d f +e^{2}}\right )^{2} \left (e +\sqrt {-4 d f +e^{2}}\right )^{2} \sqrt {a}}\) \(955\)
risch \(\text {Expression too large to display}\) \(1735\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^2/(c*x^2+b*x+a)^(1/2)/(f*x^2+e*x+d),x,method=_RETURNVERBOSE)

[Out]

4*f^2/(e+(-4*d*f+e^2)^(1/2))^2/(-4*d*f+e^2)^(1/2)*2^(1/2)/((-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a
*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)*ln(((-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f
+c*e^2)/f^2+1/f*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*2^(1/2)*((-b*f*(-4*d*f+e^
2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*
c+4/f*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+2*(-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)
^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2))/(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f))-4*f^2/(-e+(-4*d*f+e^2)^(
1/2))^2/(-4*d*f+e^2)^(1/2)*2^(1/2)/((b*f*(-4*d*f+e^2)^(1/2)-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2
)/f^2)^(1/2)*ln(((b*f*(-4*d*f+e^2)^(1/2)-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2+(c*(-4*d*f+e^
2)^(1/2)+b*f-c*e)/f*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))+1/2*2^(1/2)*((b*f*(-4*d*f+e^2)^(1/2)-(-4*d*f+e^2)^(1/2)*
c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))^2*c+4*(c*(-4*d*f+e^2)^(1/2)+b
*f-c*e)/f*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))+2*(b*f*(-4*d*f+e^2)^(1/2)-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c
*d*f+c*e^2)/f^2)^(1/2))/(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2))))-4*f/(-e+(-4*d*f+e^2)^(1/2))/(e+(-4*d*f+e^2)^(1/2))*
(-1/a/x*(c*x^2+b*x+a)^(1/2)+1/2*b/a^(3/2)*ln((2*a+b*x+2*a^(1/2)*(c*x^2+b*x+a)^(1/2))/x))+16*f^2*e/(-e+(-4*d*f+
e^2)^(1/2))^2/(e+(-4*d*f+e^2)^(1/2))^2/a^(1/2)*ln((2*a+b*x+2*a^(1/2)*(c*x^2+b*x+a)^(1/2))/x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(c*x^2+b*x+a)^(1/2)/(f*x^2+e*x+d),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(c*x^2 + b*x + a)*(f*x^2 + x*e + d)*x^2), x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(c*x^2+b*x+a)^(1/2)/(f*x^2+e*x+d),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{x^{2} \sqrt {a + b x + c x^{2}} \left (d + e x + f x^{2}\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**2/(c*x**2+b*x+a)**(1/2)/(f*x**2+e*x+d),x)

[Out]

Integral(1/(x**2*sqrt(a + b*x + c*x**2)*(d + e*x + f*x**2)), x)

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(c*x^2+b*x+a)^(1/2)/(f*x^2+e*x+d),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {1}{x^2\,\sqrt {c\,x^2+b\,x+a}\,\left (f\,x^2+e\,x+d\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^2*(a + b*x + c*x^2)^(1/2)*(d + e*x + f*x^2)),x)

[Out]

int(1/(x^2*(a + b*x + c*x^2)^(1/2)*(d + e*x + f*x^2)), x)

________________________________________________________________________________________